Chapter - 17
Debugging and
Optimization

PPPPP

ractical C

Debugging Technigues

Divide and conquer
Debug only code

Debug Command Line Switch

Note: Use I/0O redirection and the editor to
browse large volumes of debug output.

Interactive Debuggers

++ Programming Copyright 2003 O'Reilly and Associates Page 2

Gnu Debugger (gdb) commands,

run Start execution of a program.
break |i ne-nunber

Insert a breakpoint at the given line number.
break function-nane

Insert a breakpoint at the first line of the named function.
cont Continue execution after a breakpoint.
print expression

Display the value of an expression.

st ep Execute a single line in the program.
next Execute a single line in the program, skip over function calls.
| i st List the source program.
wher e Print the list of currently active functions.
st at us Print out a list of breakpoints
del ete Remove a break point.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 3

s LY Sy = = = &= " == 7§ =

A program to debug

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 4

- /4. £ 7 L LJ J L L e t— s v & L 7 aZ

[
When we run this program with the data 3 7 3 0 2 the results are: FI r g

Detuggin
Session

run

next
next

next

All right how did seven_count get to 2?

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 5

S e M e J% L Y S e J VS ITJLE Vs TeeEev

Figuring out what happened

The value got change in get_data. Lets look through it.

. s f . = 'S J = €« s - = « = - « 9 0 = =7

break get_data

run

next

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 6

Binary Search

/**

**/

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 7

L —— e Y 7 - +yr - ==L £ L =" < & 5 X

main ()

/*
*/

break;

break;

++max_count;

}

Practical C++ Programming

Copyright 2003 O'Reilly and Associates

Page 8

break;

break;

else

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 9

Data

A
6
14
16
17
-1
When we run this program on UNIX, the results are:
% sear ch

Segnentation fault (core dunped)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 10

- /4L Lr @ J J L S @ @ 0m——t D =7 ¥V —-—ry vy - LJvr rx = —n &4 - (L o - -t

(gdb)
(gdb)
where
(gdb)
quit

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 11

- JJL LE L JJ A D s =S~ T fFse—_—_eaxy r Jx r £ S & ¥ "+ 4L -

list main

(gdb)

run

step
step
step
step
step
step

step

quit

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 12

If at first you don't
succeed, play second base.

We try again:
Enter nunber to search for or -1 to quit:4
Found at 1 ndex O
Found at i ndex O
Not f ound
Ent er nunber to search for or -1 to quit:”C

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 13

run

step

step
step
step
step
step

step

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 14

The Mistake

}
Changes to:
break;
}
Try again:
search
4
6
3
5

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 15

aadee

< < =~ 2 & < 0

run

~C

(gdb)

step
step
step
step
step
step
step
step
step
step
step

step

Practical C++ Programming

Debug Session |||

Copyright 2003 O'Reilly and Associates

Page 16

Debugging Cont.

step

step

step

step

step

step

print low
print middle
print high

print search

quit

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 17

Should be:

Practical C++ Programming

Final Fix

| f (datal m ddl e] < search)
| ow = m ddl e;

el se
high = m ddl e;

| f (data[m ddle] < search)
| ow = m ddl e +1;

el se
high = mddle -1,

Copyright 2003 O'Reilly and Associates

Page 18

Tricking Interactive Debuggers
to Stop when you want them to

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 1

Runtime Errors

Segmentation Violation
* Bad pointer
* Indexing off the end of an array
Stack Overflow
* Too many local variables (big problem in DOS/Windows).

* Infinite recursion
Divide by 0
Floating exception (core dumped)
* On UNIX this 1s caused by floating point and infeger divides.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 20

-y J v _J ¥ o Jre_ L £ - 7

Buffering problem

main ()

return (0) ;

}

When run, this program outputs:
Starting
Fl oati ng exception (core dunped)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 21

Problem Solved

int main ()

{
std::cout.flush{();
std::cout.flush{();
std: :cout.flush{();
return (0) ;

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 22

Confessional Method of Debugging

Programmer explains his program to an interested party, an
uninterested part, a wall. The programmer just explains his program.

Typical session:

“Hey Bill, could you take a look at this. My program has a bug 1n it.
The output should be 8.0 and I’'m getting -8.0. The output 1s computed
using this formula and I’ve checked out the payment value and rate
and the date must be correct unless there 1s something wrong with the

leap year code which — Thank you Bill, you’ve found my problem.”

Bill says nothing.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 23

Optimization
And now a word about optimization:
Don’t!

Getting a faster machine 1s the most economical way
to speed up your program.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 24

e o o BT /A - —t— Y —— R N b — ¥ o Ll /A r ~

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 25

S -y L= - et ——t— ¥V L TV == L —T7 7 - - u 7

Register Variables

}

The register keword is a hint that tells the compiter to put a frequently used variable
in a machine register (which is faster than stack memory).

But most modern compilers ignore this hit because they can do register allocation
better than an human anyway.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 26

L v L e——— Y ——— VL el - e— 7

With loop ordering

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 27

Powers of 2

Indexing an array requires a multiply. For example to execute the line:
matri x[x][y] = -1;
the program must compute the location for placing the -1. To do this the

1) Get the address of the mat r i X.
2) Compute X * Y_SI ZE.
3) Compute y.
4) Add up all three parts to form the address. In C++ this code looks
like:
*(matrix + (x * Y.SIZE) +vy) = -1,

If we change Y_SIZE from 30 to 32, we waste space but speed up the
computation.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 28

e —— — e — -y 4 s e—h—y 4 - 7V —m— ° - - S e— o .

Using Pointers

++matrix_ptr;

Can the loop counter and the mat ri X_pt r be combined?

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 29

Using thelibrary function

Our function is one line long. We might want to make it an inline function.

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page 30

Optimizing techniques

e Remove invariant code from loops
* Loop ordering

* Reduction in strength

* Use reference parameters

* Powers of 2

* Pointers

* inline functions

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 31

Optimization Costs

Operation Relative Cost
fileinput and out (<< and >>) 1000
Also includesthe C functionspr I Nt f andscanf .

newand delete 800
trigonometric functions (sin, cos...) 500
floating point (any operation) 100
integer divide 30
integer multiple 20
function call 10
simple array index 6
shifts 5
add/subtract 5
pointer dereference 2
bitwise and, or, not 1
logical and, or, not 1

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 32

