Chapter - 5
Arrays, Qualitiers
and Reading
Numbers

Copyright 2003 O'Reilly and Associates ~ Pagel

Arrays

Simple variables allow user to declare one item, such as a single width:

If we have a number of similar items, we can use an array to declare them. For
example, if we want declare a variable to hold the widths of 1000 rectangles.

The width of the first rectangle 1s width [0] the width of the second rectangle is
width[1] and soonuntil width[999].

Warning:

Common sense tells you that the last element of the width array is width
[1000]. Common sense has nothing to do with programming and the last
element of the array is width [999].

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2

Computing the average of 6 numbers

int main ()

{

}

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page3
g g pyrig y

C++ Strings

Bring inthedning pedkege s ng thedatarat:
#icludke <strrg>
Dedaingadnng
std :string mynane; // Thenameoftheuser
Assgnngthedringavdue
my nane = "Oalline";
Uangthe‘¥’ goaaar to concataate drings

fist mme = "Stee"'; lag mme = "Oualire"™
ful nane = fist mme +" " + 1lat nans

Practical C++ Programming Copyright 2003 O'Reilly and Associates Paged

Moreon Strings

Extract a substring:

result = str.substr (first, last);
// 01234567890123
str = "This 1s a test";

sub str.substr (5, 06);

// sub == 1 23"
Finding the length of a string
string.length ()
Wide strings contain wide characters. Example:
std::wstring funny_name;

// 1f you see nothing between the "" below then you
// don't have Chinese fonts installed

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page5
funny_name = L" ",

Accessing charactersin a
string

You can treat strings like arrays, but this 1s not safe:
// Gets the sixth character

ch = str|[b5];

// Will not check to see if

// the string has 6 characters
Better (and much safer)

// Gets the sixth character

// Aborts program if

// there is no such character

ch = str.at (5);

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page6
g g pyrig y

Reading Data

The standard class st d: : cout is used with << for writing
data.
The standard class st d: : ci n is used with >> for reading
data.

std::cin >> price >> nunber _on_hand;
Numbers are separated by whitespace (spaces, tabs, or
newlines).

For example, 1f our input 1s:

32 6
Then pri ce gets 32 and nunber _on_hand gets 6.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

ey 50 S r

Doubling a number

int main ()

{

Sample run
Enter a val ue: 12
TwWce 12 1s 24

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page8

Question: Why IS
W dt h undefined?

main ()

}

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page9
g g pyrig y

Reading Strings

The combination of std: : ci n and >> works fine for integers, floating
point numbers and characters. It does not work well for strings.

To read a string use the get | i ne function.
std::getline(std::cin, string),;

For example:
std::string nane; [/ The nanme of a person

std::getline(std::cin, nane),

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel0

Initializing Variables

The new C++ style initialization:

I nt counter (0); /'l nunber cases counted so far
The older C style syntax.
I nt counter = O; /'l nunber cases counted so far

Array initialization:
[/ Product nunbers for the parts we are naking
| nt product codes[3] = {10, 972, 45},

Implied dimensioning of arrays:
[/ Product nunbers for the parts we are making
| nt product codes[] = {10, 972, 45};

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Pagell
g g pyrig y

Bounds Errors

Example:
int datal[b];

result = datal[99]; // Bad

Example of a bigger problem:
int datal[b];

data[99] = 55; // Very Bad

Modifies random memory.

C++ will not check for this!/!

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel2

"assert” I1syour friend

The assert function checks to see 1f a condition 1s true.
If 1t 1s not, the program 1s aborted.

Example:
#include <assert.h>

int main ()

{
int 1 = 2;
assert (1 == 3);
return (0) ;

}

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Pagel3
g g pyrig y

Protecting arrays with
assert

Example:

#include <assert.h>
int datal[b];

int index;

int main ()

{

index = 5;

assert (index >= 0);
assert (index < 5); // Not the best way of doing it

index = data[index];

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel4

Using si1zeof to automatically
compute the array limit.

The sizeof function returns the number of bytes allocated to a variable.

Definitions:

sizeof (array) Number of bytes in an array

sizeof (array[0]); Number of bytes in an element of the arrays
Therefore

number of elements =
sizeof_array_in_bytes / sizeof_element_in_bytes

In C++:
assert (index >= 0);
assert (index < (sizeof (data) / sizeof(datal[0]));
index = data[index];

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Pagel5
g g pyrig y

Multiple Dimensional Arrays

type vari abl e[si zel] [size2]; // conmment

Example:
/[l a typical matrix
int matrix[2][4];

Notice that C++ does not follow the notation used in other languages: mat ri X
[10,12] // Not C++

To access an element of the mat r 1 X we use the notation:
matri x[1][2] = 10;

More than two dimensions can be used:
four _dinensions|[10][12][9][5];

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel6

Initializing Matrices

b

This 1s shorthand for:

matrix[0][0] 1;
matrix[0][1] = 2;
matrix[0][2] = 3;
matrix[0] [3] 4,
matrix[1][0] 10;
matrix[1][1] = 20;
matrix[1l][2] = 30;
matrix[1][3] 40;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel7

r L =~ L & 79 &4 - 4 ¥ ¥ J 7 5 T S R o e o e o - A

Question: Why does this program
produce funny answers?

b

int main ()

J

When run on a Sun 3/50 this program generates:
Last el enment is 0x201e8

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel8

C Style Strings

C Style Strings are constructed from arrays of characters.

/[l A string of up to 99 characters
char a_string[100];

Strings end in the special character \ 0" (NUL).

a string[0] ="'S;
a string[1l] = "a';
a string[2] ="'m;
a string[3] ="'\0"; // End the string

The variable a_St r i ng contains the string "Samni' .

Note: a_sStri ng now holds a string of length 3. It can hold any length
string up to 99 characters long. (One character must be reserved for the end-
of-string marker '\0"'.)

Practical C++ Programming Copyright 2003 O'Reilly and Associates Pagel9

Question

Are all “strings” 4 rrays of characters?

2% ¢¢

Are all € haracter arrays” “‘strings?

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page20

Using C Style Strings

String constants are enclosed in double quotes. Example: "Sam".

Strings can not be directly assigned.
a string = "Sant; /1 111 egal
The standard function std: : St r cpy can be used to copy a string.

#i ncl ude <cstring>
[l ...
std::strcpy(a_string, "Saml'); // Legal.
/| But dangerous

Note: #I ncl ude <cstri ng> tells C++ that we are using the standard
string package.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page21

Standard C Style String Functions

Function

Description

std::strcpy(stringl, string2)

Copiesstring2intostri ngl. (Unsfe

std::strncpy(stringl, string2,

| engt h)

Copiesstring2intostringl butlimitthe
number of characters copied (induding theend
of gring) to 1length (Ser)

std::strcat(stringl, string2)

Concatenates st r i ng2 onto theend of
stringl. (Unsde

std::strncat(stringl, string2,

| engt h)

Concatenates st r i ng2 onto theend of

stringl. Limt thenumber of chaeracters
addedto 1engthDoesnot guarantesthat
anend of gringwill becopled. (Safer)

length = std::strlen(string)

Gatsthelength of adring. (SHfe)

std::strcenp(stringl, string2)

Oif stringlegualsst ri ngs2,
otherwise non-zero. (Se)

Practical C++ Programming

Copyright 2003 O'Reilly and Associates Page22

T . /e e A 7 - o B o - - o

Using std: :strcpy

main ()

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page23

Combining Two Names

int main ()

{

strcat strcpy

}
Outputs:
The full name is Steve CQualli ne

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page24

Inltlallzmg Strings

char nanme[] = {'S, 'a', , "\0'};

C++ has a special shorthand for initializing strings, by using double quotes (") to
simplify the initialization.

char nane[] = "Sanl;

The dimension of nane is 4, because C++ allocates a place for the \O’ character
that ends the string.

Note:
char string[50] = "Sant;

Declares a string variable that can hold strings that are 0 to 49 characters long, but
initializes the string to a 4 character string.

The statement initializes only 4 of the 50 values in St r i ng. The other 46 elements
are not initialized and may contain random data.

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page25
g g pyrig y

Finding thelength of C Style string

int main ()

{

}

When we run this program we get:
Enter a |ine:test
The length of the line is: 4
Question: What 1s the size of 1ine and what 1s the length of 1ine? What’s the

difference?

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page26
g g pyrig y

Safe C Style Strings

Safe copy

assert (sizeof (name) >= sizeof (O ualline¥) ;
std::strcpy (name, O uallinef;

assert (sizeof (name) > std::strlen(first_name));
std::strcpy (name, first_name);

std::strncpy (name, last_name, sizeof (name)-1);
Safe concatenation:
std: :strncat (name, last_name,
sizeof (name) -—-strlen(name) -1);
name [sizeof (name)-1] = '\0';

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page27

Reading C Style Strings

char name[50];

//

std::getline(std::cin,
name, sizeof (name) ;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page28

Converting between string types

char c_string[100];
std::string cpp_string;

C Style string => C++ String -- Just assign
cpp_string = c_string;
C++ String => C String — use the c_ st r function call

strncpy (c_string, cpp_string.c_str(),
sizeof (c_string));

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page29

String differences
[CorSwimgs [Cwimgs

Memory Automatic Manual
Allocation

Efficency / Medium Fast
Speed

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page30
g g pyrig y

Typesof Integers

Integers come in various flavors:

int Normal storage used
long int Extra storage may be used

Long Integer constants are specified with “L” at the end
[/ Anmount 1 n account (in cents)
|l ong I nt anmount = 12345L;

short int
Reduced storage may be used

signed Numbers can be positive or negative (the default)
unsigned
Only positive numbers allowed.

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page31
g g pyrig y

Very Short Integers

Character variables can be used to store very short integers (in the range
from -128 to 127 (signed) or O to 255 (unsigned)).
Example:

[/ If set, pre-process the I nput

unsi gned char flag = 1;

Question: Is the following character variable signed or unsigned?

char f oo;
Answers:
a. It’s signed.
b. It’s unsigned.
C. If we always specity signed or unsigned we don’t have to

worry about problems like this.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page32

Reading and Writing Very Short
|ntegers

Writing very short integers can be done by using the

static_cast<int> operation.
unsi gned char flag = 1;

std::cout << "Flag is " <<
static_cast<int>(flag) << "\n";

Reading of very short integers can not be done directly.

You must read an integer and assign it to a very short
integer.

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page33
g g pyrig y

Types of Floating Point
numbers

float

Normal floating point number. (Default range
and precision.)
double

Double precision (and double range) tloating
point number.
long double

(Not-standard. Available only on a few
compilers.)

Extended precision and range.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page34

Constant Declar ations

// The classic circle constant
const float PI = 3.1415926;

Note:

By convention variable names use lower case only names while constants use upper
case only. However there is nothing in the language that requires this and several
programming systems use a different convention.

A constant can not be changed:
Pl = 3.0; [l 111l egal

Integer constants can be used as a size parameter when declaring an array.
// Max. num. of elements in total list.

// Total values for each category
float total 1ist [TOTAL_MAX];

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page35
g g pyrig y

Refer ence Declar ations

Reference declarations allow you to give another name to an existing
variable (an alias.)
Example:

// Another name for count
From now on count and act ual _count are the same variable.
Anything done to count is reflected in act ual _count.

Value
Var. count int count;
Name actual_ count int actual count = count;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page36

Qualifiers

The complete list of qualifiers

Special Class Size Sign Type

volatile register long signed 1int

<blank> static short unsigned float
extern double <blank> char
auto <blank> <blank>

<blank>

Practical C++ Programming Copyright 2003 O'Reilly and Associates

Page37

Special

violate Indicates a special variable who’s value may
change at any time. (Used 1n specialized
programming not covered by this course.)

<blank> Normal variable.

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page38
g g pyrig y

Variable Class

register This indicates a frequently used variable
that should be kept in a machine register.

static The meaning of this word depends on the
context.

extern The variable 1s defined 1n another file.
auto A variable allocated from the stack. This
keyword 1s hardly ever used.

<blank> Indicates that the default class (auto) 1s
selected.

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Page39
g g pyrig y

Size

long Indicates a larger than normal
integer. (Some non-standard compilers use
long double to indicate a very large tloating
point variable).

short A smaller than normal integer.
double A double size floating point number.
<blank> Indicates a normal size number.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page40

Sign

signed Values range from the negative to the positive. Always true
for floating point numbers.
unsigned
Positive numbers only allowed.
<blank>
For integers defaults to signed.

Character variables may be signed, unsigned or <blank>. These are
indicator should be use for character variables which will hold only

characters instead of very short integers. For very short integers, you
should always specify signed or unsigned.

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Paged1
g g pyrig y

Type

int Integer.
float Floating point numbers.
char Single characters, but can also be used

for very short integers.

Practical C++ Programmin Copyright 2003 O'Reilly and Associates Paged?2
g g pyrig y

Hexadecimal and Octal
Constants

Hexadecimal constants (base 16) begin with 0x. (0x12)
Octal constants (base 8) begin with aleading 0. (012)

Base 10 Base8 Base 16
6 06 0x6
9 011 0x9
15 017 OxF

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page43

Question: Why doesthe following
program fail to print the correct zip
code? What does it print instead?

int main ()

{

std::cout <<"New York's Zip code is: "<< zip << '\n';
return(0) .

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Paged4

Shortcut operators

The code:

total _entries = total _entries + 1,
Can be replaced by:

++total _entries;
Similarly:

total entries = total _entries - 1,
Can be replaced by:

--total _entries;

Also
total entries = total _entries + 2

1s the same as
total _entries += 2;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page45

Shorthand Operators

Practical C++ Programming

Operator Shorthand Equivalent Statement
+= X += 2; X = xXx + 2;
—= X —= 2; X = X - 2;
*= X *= 2; X = X * 2
/= X /= 2; x =x/ 2;
5= X %= 2; X = X % 2;

Copyright 2003 O'Reilly and Associates

Paged6

Side Effects

A side effect occurs when you have a statement that performs a main
operation and also another operation:
Example:
Sl ze = 5;
result = ++size;
The first statement assigns Si ze the value of 6. The second statement:
1. Increments Si ze. (side effect).
2. Assigns r esul t the value of Si ze (main operation).

Do not use side effects. They confuse the code, add risk to your program

and in general, cause a lot of trouble. We are after clear code, not clever
compact code.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Paged7

Problemswith side effects

val ue = 1;
result = (value++ * 5) + (value++ * 3);

This expression tells C++ to perform the steps:

a. Multiply val ue by 5, add 1 to val ue.
b. Multiply val ue by 3, add 1 to val ue.
C. Add the results of the two multiplies together.

But in what order?

Steps a. and b. are of equal priority so the compiler can execute them in any
order it wants to.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page48

"a" first

result

Evaluate 1st expression g

(value++ * 5) + (value++ * 3);

\\w A Y
J N h
\\\\\ 1
r a

Evaluate 2nd expression

5 + 6
RNy N

NS

Practical C++ Programming

Copyright 2003 O'Reilly and Associates Page49

"b" First

result

(value++ * 5) +

.+ operation

Evaluate 2nd expression’”
| 4

- %)

ﬁ§§

(value++ * 3);

Evaluate 1st expression

.

* S0

Practical C++ Programming

Copyright 2003 O'Reilly and Associates

Page50

Final Warning

We’ve not discussed all of the problems that side
effects can cause. We’ll see how side effects can
cause havoc when we study the pre-processor. The
simple rule 1s:

Put ++ and -- on lines by themselves.

This avoids a tremendous amount of risk. Your
programs have enough problems without your
playing with fire.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page51

