
Practical C++ Programming Copyright 2003 O'Reilly and Associates Page1

Chapter - 3
Style

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page2

Quality

Quality is designed in, not tested in.

— Dave Packard

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page3

Style
● Style is the most important part of

programming.
● Style is what separates the gems from the junk.
● It is what separates the programming artist from

the butcher.
● The Mona Lisa and a paint-by-numbers picture

are both paintings.
● What separates the two is Style.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page4

Maintaining Maintenance
The average number of lines of code in a typical application has
skyrocketed from 23,000 in 1980 to 1.2 million in 1990, according to
a recent survey of managers attending the 1990 Annual Meeting and
Conference of the Software Maintenance Association. At the same
time, system age has risen from 4.75 to 9.40 years. Fortunately, the
number of people devoted to maintaining them has made a
comparable jump from 0.41 to 19.4.

What’ s worse, 74% of the managers surveyed at the 1990 Annual
Meeting and Conference of the Software Maintenance Association
reported that they “ have systems in their department that have to be
maintained by specific individuals because no one else understands
them.”

— Software Maintenance News, February 1991

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page5

Comments
A program serves two masters.
• Code tells the computer what to do.
• Comments describe what the program does to the poor programmer who
has to maintain it.

There are two types of comments in C++.

// Comments that begin with double-slash

// and go to the end of line

/* Comments that start with slash/star */

/*and go to star/slash */

/*

* The second version can be used
 * for multi-line comments

*/

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page6

Hello World

#include <iostream>
int main()
{

std::cout << "Hello World\n";

return (0);
}

What’ s missing from this program?

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page7

Hello Again
/**

* hello -- program to print out "Hello World". * * Not an especially earth-shattering program. *

* *

* Author: Steve Oualline *

* *

* Purpose: Demonstration of a simple program *

* *

* Usage: *

* Run the program and the message appears *

 **/
#include <iostream>
int main(){

// Tell the world hello

std::cout << "Hello World\n";

return (0);
}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page8

Beginning Comments
● Heading
● Author
● Purpose
● Usage
● References
● File Formats
● Restrictions
● Revision History
● Error Handling
● Notes
● Anything else that’ s useful

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page9

Oualline's Law Of Documentation

90% of the time the documentation is lost.

Out of the remaining 10%, 9% of the time the
revision of the documentation is different from the
revision of the program and therefore completely
useless.

The 1% of the time you actually have documentation
and the correct revision of the documentation, it will
be written in Japanese.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page10

Boxing with VI

Edit the file .exrc and add:

:abbr #b /**
:abbr #e **/

To create a top box, type
#b<return>

To create a box bottom
#e<return>

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page11

Text-Setting
/**
 **

******** WARNING: This is an example of a *******

******** warning message that grabs the *******

******** attention of the program. *******

 **
 **/

/*------------> Another, less important warning<--------*/

/*>>>>>>>>>>>> Major section header <<<<<<<<<<<<<<<< */

/**

* We use boxed comments in this book to denote the *

* beginning of a section or program *

 **/

/*--*\

* This is another way of drawing boxes *

--/

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page12

More Text Setting
/*
 * This is the beginning of a section
 * ^^^^ ^^ ^^^ ^^^^^^^^^ ^^ ^ ^^^^^^^
 *
 * In the paragraph that follows we explain what
 * the section does and how it works.
 */

/*
 * A medium level comment explaining the next
 * dozen or so lines of code. Even though we don’t have
 * the bold typeface we can **emphasize** words.
 */

/* A simple comment explaining the next line */

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page13

Variables
Use long names (but not too long).

int p,q,s; // Wrong

int account

_number; // Right

Always comment your variable declarations

int name_count; // The number of

 // names in the list
Units are important.

int length; // Length of the widget

Is length, mm, cm, miles, light-years or microns? The answer’ s important.

The following comes from a real program written by Steve Oualline:
/**

* Note: I have no idea what the input units are, nor *

* do I have any idea what the output units are, *

* but I have discovered that if I divide by 3 *

* the plots look about the right size. *

 **/

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page14

KISS (Keep it Simple,
Stupid)

Which is more valuable?

1) A clear, well written, easy to read, but broken
program

2) A clever complex working program.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page15

Precedence Rules
ANSI Standard Rules

1. () [] -> . 2. ! ~ ++ -- (type) - (unary) * (dereference) & (address of) sizeof 3. * (multiply) / % 10. | 4. + - 11. && 5. << >> 12. || 6. < <= > >= 13. ?: 7. == != 14. = += -= etc. 8. & (bitwise and) 15. , 9. ^

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page16

Practical Precedence Rules

1. * (multiply) / % 2. + -

Put parentheses around everything else.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page17

Clever vs. Simple
Clever and very compact.

while ('\n' != *p++ = *q++);

What does this do? It takes up very little space, but don’ t save space,
save the sanity of the people that follow you.

Simple and somewhat easier to understand.

while (1) { *destination_ptr = *source_ptr;

++destination_ptr;

++source_ptr;

 if (*(destination_ptr-1) == '\n') break; // exit the loop if done

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page18

Naming Style

Most programs follow the convention that variables are all lower case:
source_ptr, current_item

Most #define constants are all upper case:
MAX_ITEMS, SCREEN_WIDTH

Constants declared with the const C++ keyword generally follow no
convention. (Unfortunately)

Some p eople use Upper/Lower case instead o f und erscores (_) in
variables.
CurrentItemList, LargestAccount

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page19

Indentation
Indentation is a religious issue. Many religious wars are waged over
where to put the curly braces ({}).

Some common styles are:The short form

while (! done) {

std::cout << "Processing\n";

next_entry();
}

if (total <= 0) { std::cout << "You owe nothing\n"; total = 0; } else { std::cout << "You owe " <<

total << " dollars\n";

 all_totals = all_totals + total;
}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page20

Braces stand alone

while (! done)

{

 std::cout << "Processing\n";

next_entry();
}

if (total <= 0)

{

 std::cout << "You owe nothing\n"; total = 0;

}

else

{

 std::cout << "You owe $" << total << "\n"; all_totals = all_totals + total;

}

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page21

Clarity
Programs should read like a technical paper. Break your code into
sentences, paragraphs, sections, chapters and books.

Example of a program with no “ paragraphs.”

// poor programming practice temp = box_x1;

box_x1 = box_x2;

box_x2 = temp; temp = box_y1; box_y1 = box_y2; box_y2 = temp;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page22

Paragraphs add Clarity
Same program with paragraphs added in.
/*

 * Swap the two corners

*/

/* Swap X coordinate */ temp = box_x1; box_x1 = box_x2; box_x2 = temp; /* Swap Y coordinate */ temp = box_y1; box_y1 = box_y2; box_y2 = temp;

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page23

Simplicity
Dennis Day worked on an old radio program called the Jack Benny
show. Dennis was not the brightest person in the world. The following
exchange took place during a remote broadcast from San Diego:

Jack: I don’ t understand it, Dennis. It took you five days to get here
from Los Angeles. What took you so long?

Dennis: I ran into a lot of traffic in Salt Lake city.

Jack: Dennis... Dennis... Why did you go from Los Angeles to San
Diego by way of Salt Lake City?

Dennis: I wanted to avoid the traffic light in Oceanside.

The moral of this story. When you program don’ t go from Los
Angeles to San Diego by way of Salt Lake City.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page24

Simplicity
• A single function should not be more than one or two pages long.

• Avoid complex logic like multiple-nested if’ s.

• About the time your c ode starts to run into the right margin, you probably
should consider splitting up into smaller, simpler units.

• Did you ever read a sentence, like this one, where the author went on and on,
stringing together sentence after sentence with the word “a nd” and didn’ t seem to
understand the fact that several shorter sentences would do the job much better and
didn’ t it bother you?

C++ statements should not go on forever. Split long statements into smaller,
simpler ones.

• Split large single code files into multiple smaller ones. Any file with more than
about 1,500 lines of code is hard to edit and even harder to understand.

• When designing classes, try to put one class per module.

Practical C++ Programming Copyright 2003 O'Reilly and Associates Page25

The Golden Rule of
Programming:

Make your program as clear
and as simple as possible.

